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PAPER

RK-Means Clustering: K-Means with Reliability

Chunsheng HUA†∗, Qian CHEN†, Nonmembers, Haiyuan WU†a),
and Toshikazu WADA†, Members

SUMMARY This paper presents an RK-means clustering algorithm
which is developed for reliable data grouping by introducing a new reli-
ability evaluation to the K-means clustering algorithm. The conventional
K-means clustering algorithm has two shortfalls: 1) the clustering result
will become unreliable if the assumed number of the clusters is incorrect;
2) during the update of a cluster center, all the data points belong to that
cluster are used equally without considering how distant they are to the
cluster center. In this paper, we introduce a new reliability evaluation to
K-means clustering algorithm by considering the triangular relationship
among each data point and its two nearest cluster centers. We applied the
proposed algorithm to track objects in video sequence and confirmed its
effectiveness and advantages.
key words: robust clustering, reliability evaluation, K-means clustering,
data classification

1. Introduction

Clustering algorithms can partition a data set into c groups
to reveal its nature structure.

K-means (KM) [25] is a “Hard” algorithm that un-
equivocally assign each vector in the data set into one of
c subsets, where c is a natural number. Given a data set
X = {x1, x2, . . . , xn}, the K-means algorithm computes c pro-
totypes w = (wc) which minimize the average distance be-
tween each vector and its closest prototype:

E(w) =
n∑

i=1

(xi − wsi(w))2, (1)

where si(w) denotes the subscript of the closest prototype to
vector xi. The prototypes can be computed iteratively with
the following equation until w reaches a fixed point.

w
′
k =

1
Nk

∑
i:k=si(w)

xi, (2)

K-means clustering has been widely applied to the image
segmentation [22]–[24]. Recently, it has also been used for
object tracking [17], [18], [20].

Fuzzy and possibilistic clustering generate a member-
ship matrix U, where its elements uik indicates that the mem-
bership of xk in cluster i. The Fuzzy C-Means algorithm
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(FCM) [1], [2], [16] is the most popular fuzzy clustering al-
gorithm. It assumes that the number of clusters c, is known
as a priori, and minimizes

E f cm =

c∑
i=1

n∑
k=1

um
ik‖xk − wi‖2, (3)

subject to the n probabilistic constrains,

c∑
i=1

uik = 1; k = 1, . . . , n, (4)

here, m > 1 is the fuzzifier. FCM provides the matrices U
and W (W = (w1,w2, . . . ,wc)) that indicate the membership
of each vector in each cluster and the center of each cluster
respectively. The conditions for local extreme for Eqs. (3)
and (4) are,

uik =

⎛⎜⎜⎜⎜⎜⎝ c∑
j=1

m−1

√√
d2

ik

d2
jk

⎞⎟⎟⎟⎟⎟⎠
−1

, (5)

and

wi =

∑n
k=1 um

ikxk∑n
k=1 um

ik

. (6)

In many applications of K-means or FCM clustering,
the data set contains noisy vectors. Using the above cluster-
ing methods, every vector in the data set is assigned to one
or more clusters, even if it is a noisy one. These clustering
methods are not able to distinguish the noisy vectors from
the rest vectors in the data set, and those noisy vectors will
attract the cluster centers towards them. Therefore, these
clustering methods are sensitive to noise. A good K-means
(or C-means) clustering method should be robust so that it
can determine good clusters for noisy data sets. Several ro-
bust clustering methods have been proposed [3]–[15], and a
comprehensive review can be found in [3].

The Noise Cluster Approach [4] introduces an addi-
tional cluster called noise cluster to collect the outliers (an
outlier is a distant vector from all the clusters). The distance
between any vectors and the noise cluster is assumed to be
the same. This distance can be considered as a threshold. If
the distance between a vector and all the clusters is longer
than this threshold, it will be attracted to the noise cluster
thus classified as an outlier. When all the c clusters have
about the same sizes and the size is known, the noise cluster
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approach is very effective. When the clusters have different
sizes or the size is unknown, this approach will not perform
well because it only has one threshold and there is not a
method to find a good threshold value for a given data set.

The Possibilistic C-Means Algorithm (PCM) [5], [6]
computes a matrix of possibilistic membership T. The el-
ement ti j of T indicates the possibilistic membership of vec-
tor x j belongs to ith cluster. Although PCM seems better
than FCM and hard K-means clustering approach, it often
finds identical clusters.

Jolion [13] proposed an approach called the General-
ized Minimum Volume Ellipsoid Method (GMVE). In the
GMVE approach, one finds a minimum volume ellipsoid
that covers (at least) h vectors of the data set X. After that,
it finds the best cluster by reducing the value of h gradu-
ally. This approach is computationally expensive and needs
to specify several threshold parameters. Moreover, when the
cluster shapes to be detected cannot be described by ellip-
soids, this approach would not work.

Chintalapudi [10] proposed an approach called Credi-
bility Fuzzy C-Means method (CFCM). It assigns a cred-
ibility value for each vector xk according the ratio of the
distance between it and its closest cluster to the distance
between the farthest vector and its closest cluster. If the
farthest outlier is much farther than the rest outliers, this
approach will assign high credibility values to most of the
outliers. In this case, CFCM would not work well.

2. RK-Means Clustering

2.1 Reliability

Both the K-means and fuzzy C-means clustering (FCM) al-
gorithm (including its extensions) assume that the number
(c) of the clusters of a data set is known. In the real world,
a data set may contain many noisy vectors and the number
of clusters of it is often unknown. The noisy vectors and
the data vectors that do not belong to any of the assumed
clusters are often very distant from any of the c prototypes
(thus called outliers), so it would not be meaningful to as-
sign them a cluster number for K-means algorithm or a high
membership value to any of the c clusters for FCM.

We attempt to decrease the outlier sensitivity in K-
means clustering by introducing a new variable reliability to
distinguish an outlier from a non-outlier. Since outliers are
distant from any of the c prototypes, the distance between a
data vector and its closest prototype should be taken into ac-
count in order to tell whether the vector is an outlier or not.
Existing methods such as noise cluster approach [4] or cred-
ibility fuzzy C-means algorithm use that distance to tell an
outlier from a non-outlier. However, the distance between a
data vector and its nearest cluster center can not be a mea-
sure of outlier by itself. To tell if a data vector is an outlier
or not, one should consider both the distance between a data
vector and its nearest cluster center and the structure of the
cluster centers, that is the distance between cluster centers.

As shown in Fig. 1, where w1 and w2 are two cluster

Fig. 1 Introduce the concept of reliability.

centers, and x1 and x2 are two data vectors. In the figure,
if we only look at the distance from a vector (x1 or x2)
to its closest cluster center (w1), we can only say that x2

is closer to w1 than x1. However, no conclusions can be
drawn from the value d11 and d21 as which of the vectors is
more like an outlier. By considering the shape of the trian-
gle �x1w1w2 and �x2w1w2, that is the relation among three
distances (d11, d12, dw12), and the one among (d21, d22, dw12),
we can say that x1 should be considered as an outlier while
x2 should not be.

In this paper we denote the data set as X, its n vectors
as {xk}nk=1 and the cluster centers wi, i = 1, . . . , c. We define
reliability for a data vector xk as

Rk =
‖w f (xk) − ws(xk)‖

d f k + dsk
, (7)

where

dk f =‖ xk − w f (xk) ‖,
dks =‖ xk − ws(xk) ‖, (8)

f (xk) and s(xk) are the subscript of the closest and the sec-
ondly closest cluster centers to vector xk:

f (xk) = argmin
i=1,...,c

(‖xk − wi‖),
s(xk) = argmin

i=1,...,c,i� f
(‖xk − wi‖). (9)

The farther xk is from its nearest cluster center, the
lower is its reliability. The value of this reliability is not
determined by the distance between xk and its nearest clus-
ter center itself. Instead, it is determined by using the dis-
tance between the two nearest cluster centers to measure
how distant that xk from the two nearest cluster centers. This
makes the reliability evaluation becoming more reasonable
than only use the distance from a data vector to its nearest
cluster center.

2.2 Degree of Reversion

For each data vector, fuzzy C-means algorithm computes c
memberships that indicate the degrees of the vector belong
to the c clusters. This is computationally expensive, espe-
cially for real-time video image processing. In this research,
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we use a simple method to evaluate the degree of a vector
belongs to its closest cluster to achieve realistic clustering
than “hard” techniques while keeping the computation cost
to be low. The degree μk of a vector xk belongs to its closest
cluster is computed from the distance from it to its closest
(dk f ) and the secondly closest (dks) cluster centers:

μk =
dks

dk f + dks
, (10)

SinceRk – the reliability of xk –indicates how reliable that xk

can be classified, the possibility that xk belongs to its closest
cluster can be computed as the product of Rk and μk.

tk = Rk ∗ μk. (11)

2.3 RK-Means Clustering Algorithm

RK-means clustering algorithm partitions X by minimizing
the following objective function:

Jrkm(w) =
n∑

k=1

tk‖xk − w f (xk)‖2, (12)

The cluster centers w can be obtained by solving the equa-
tion

∂Jrkm(w)
∂w

= 0 (13)

The existence of the solution to Eq. (13) can be proved eas-
ily if the Euclidean distance is assumed. To solve this equa-
tion, we first compute an approximate w with the following
equation:

w j =

∑n
k=1 δ j(xk)tkxk∑n

k=1 δ j(xk)tk(xk)
. (14)

where

δ j(xk) =

{
1 if j = f (xk)
0 otherwise (15)

Then w can be obtained by applying Newton’s algo-
rithm using the result of Eq. (14) as the initial values.

The RK-means clustering algorithm is summarized as
follows:

1) Initialization
i) given the number of clusters c and
ii) given an initial value to each cluster center wi, i =
1, . . . , c.
The initialization can be done by applying K-means or
fuzzy c-means approaches, or performed manually.
2) Iteration
while wi, i = 1, . . . , c do not reach fixed points,
Do
i) calculate f (xk) and s(xk) for each xk.
ii) update wi, i = 1, . . . , c by solving Eq. (13).

3. Object Tracking Using RK-Means Algorithm

The RK-means can be used for realizing robust object track-
ing in video sequences. (see Fig. 2). Because the most im-
portant thing while object tracking is to classify the un-
known pixels into target or background clusters, object
tracking can be considered as a binary classification. There-
fore, the first and second closest clusters in RK-means clus-
tering algorithm will be replaced by the target and back-
ground clusters. Since it is more important to tell if the
unknown pixel belongs to the target cluster or not, the first
closest cluster will be considered as the target cluster, and
naturally second closest cluster is the background cluster.

Each pixel within the search area will be classified into
target and background clusters with the RK-means cluster-
ing algorithm. Noise pixels that neither belong to target
nor background clusters will be given low reliability and ig-
nored. Pixels belong to the target group is farther divided
into N target clusters, each of them describes the target pix-
els having similar color. The pixels belonging to the back-
ground clusters is also divided into m background clusters.

We use a 5D uniform feature space to describe im-
age features. In the 5D feature space, both the color and
the position of a pixel is described by a vector f = [c p]T

uniformly. Here c = [Y U V]T describes the color and
p = [x y]T describes the position on image plane.

In the 5D feature space, we describe the target centers
as

fT(i) = [cT(i) pT(i)]T , (i = 1 ∼ N),

N is the number of target clusters. Each target cluster de-
scribes the target pixels having similar color. The back-
ground pixels are represented as

fB( j) = [cB( j) pB( j)]T , ( j = 1 ∼ m),

m is the number of the background clusters. An unknown
pixel is described by fu = [cu pu]T . Thus we can get the
subscript of the closest target and background cluster centers
to fu as follows.

sT (fu) = argmin
i=1∼N

{‖fT(i) − fu‖},
sB(fu) = argmin

j=1∼m
{‖fB( j) − fu‖}. (16)

Fig. 2 Explanation for target clustering with multiple colors.
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(a) Input image.

(b) K-means.

(c) RK-Means: The red area has low reliability.

Fig. 3 A comparative result of object tracking with the K-Means and
RK-Means algorithms.

Since fu is requested to be classified into target or back-
ground clusters, it can be considered that only two candidate
clusters (target and background clusters) exist while object
tracking. Therefore, obviously one cluster will be the first
nearest cluster, and another will be the second nearest one.
Because it is more important to check if fu is a target pixel
or not, sT is considered as the first nearest cluster and sB

as the second nearest cluster. By applying sT and sB to
Eqs. (9), (8), the RK-means algorithm can be used to remove
the noise data (as shown in Fig. 3) and update the target cen-
ters fT(i), i = 1, . . . ,N. Because the background clusters are
defined and selected from the ellipse contour and updating
background clusters with Eq. (14) will move them from the
ellipse contour, we update the background clusters (also the
ellipse contour) by the method mentioned in [17].

4. Experiment and Discussion

4.1 Evaluating the Efficiency of RKM

In the following parts of this paper, we abbreviate the Hard
(or conventional) K-means clustering as CKM, Fuzzy C-
means as FKM and the reliability K-means as RKM. To
evaluate the proposed RKM algorithm, we compare it with
the CKM and FKM clustering under different conditions, in
the following illustrations the large “•” represents the target
center. In Figs. 4, 5, the initial value of K is two (one cluster

(a) CKM. (b) FKM. (c) RKM.

Fig. 4 Clustering with separated clusters.

(a) CKM. (b) FKM. (c) RKM.

Fig. 5 Clustering with completely overlapped clusters.

(a) CKM. (b) FKM. (c) RKM.

Fig. 6 Clustering with missing cluster problem.

is indicated by red, another by green), the position of ini-
tial points is the same and all the algorithms run at the same
iterations.

In Fig. 4, since the distribution of two clusters is well
separated, all methods give the similar good result.

In Fig. 5, the distributions of two clusters merge as one
cluster. In such case, it is reasonable to consider them as one
cluster. The CKM and FKM algorithm still brutally divide it
into two separated clusters. With Eq. (7), the proposed RKM
can gradually move the initial centers together and give the
result as shown in (c). Although the result of our RKM
algorithm works better than the CKM and FKM methods,
the whole clustering procedure becomes unreliable. That
is because the cluster centers tend to move together, thus
Eqs. (11), (7) will produce low reliability for each data item.
In our future work, we consider the function of merging is
necessary for our RKM algorithm.

Figure 6 shows a case where four clusters exist but the
initial value of K is three (hereafter we call the phenomenon
like this as the missing cluster problem). Here, the yellow
“�” denotes the initial position of cluster centers which is
manually defined, and the red “•” means the final clustering
result. The CKM only puts one cluster center correctly and
makes the completely wrong results of the other two cluster
centers. The FKM is heavily affected by the missing cluster,
because it brutally allocates a membership to each input data
item. With Eqs. (7), (11), our RKM correctly classifies the
initial three centers by giving an extremely low reliability to
the missing cluster.

In Fig. 7, we show the comparative experimental result
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Fig. 7 Experiment when the given number of K is larger than the real
number of clusters. Cluster 1: red points; Cluster 2: green points; Clus-
ter 3: blue points. All three clustering algorithms give the same results to
Cluster 1 and 3. They give different conclusion on Cluster 2.

Table 1 When the given number of K is larger than the real number of
clusters, the clustering result of CKM, FKM and RKM for cluster 2. The
real center of cluster 2 is located at (230, 80).

Point 1 Point2
Initial Given Position (285, 140) (245, 60)
Result of CKM (240, 75) (218, 86)
Result of FKM (238, 75) (220, 86)
Result of RKM (235, 84) (229, 81)

of the CKM, FKM and RKM in the case that the given initial
number of K (K = 4) is larger than that of the real input data
(3 clusters). In this image, the pink hollow “�” is the initial
given point and the solid “�” of sky blue color, the red hol-
low “◦” and the black “•” denote the final result of CKM,
FKM and RKM clustering algorithms, respectively. In this
experiment, three of the initial points are correctly located
within the corresponding clusters, but one additional initial
point is assigned to the right-top of cluster 2. In such case,
because both the CKM and FKM will allocate one data to
one or several clusters without considering if the clustering
process for such data is reliable or not, either of them will
assign some data of cluster 2 to that additional initial point.
Thus, their clustering result is heavily affected. As for the
RKM algorithm, it becomes insensitive to the initial given
points by evaluating the reliability of clustering data to the
additional initial point. And finally, the additional cluster
center is removed towards the real center of cluster 2. Al-
though the result of RKM when clustering data to cluster 2
is not the perfect result, compared with CKM and FKM, the
RKM gives the best result.

Through Table 1, we can see that there is just a little dif-
ference between the result of CKM and that of FKM. Both
of them are heavily affected by the additional given initial
point (285, 140) which is located out of cluster 2. Although
CKM and FKM try to merge the two given centers into one
cluster, the performance of them is not satisfying. Contrast
to CKM and FKM, although the proposed RKM does not

Fig. 8 Convergence of the CKM and RKM algorithms.

really convert the two initial points into one cluster, it seems
to merge them most successfully.

4.2 Convergence of the RKM

One important characteristic of the RKM clustering algo-
rithm is whether it converges or not. As for this question, the
objective function of RKM is a good index to check whether
it converges or not. If the value of the objective function re-
mains unchanged (or the changes are so small that such they
can be ignored) after a finite iteration number, that denotes
that the RKM algorithm converges. Otherwise, the RKM
diverges.

To perform this experiment of convergence, we apply
the RKM to the IRIS dataset to check its convergence. The
IRIS dataset has 150 data points. It is divided into three
groups and two of them are overlapping. Each group con-
tains 50 data points. Each point has four attributes.

In Fig. 8, because the objective functions of the CKM
and RKM are different from each other, we can not say that
the RKM converges better than the CKM, but we could say
that the RKM algorithm could converge as well as the CKM
algorithm. Since the RKM adds the reliability estimation to
the clustering process, as the speed of convergence, it can
converge faster than the CKM algorithm.

4.3 Object Tracking Experiment

4.3.1 Manual Initialization

It is necessary to assign the number of clusters when using
the K-means algorithm to classify a data set. In our tracking
algorithm, in the first frame, we manually select N points on
the object to be tracked and use them as the N initial target
cluster centers. We let the initial ellipse (search area) be a
circle. The center of circle is put at the centroid of the N
initial target cluster centers. We manually select one point
out of the object and let the circle cross it. In the following
frames, the ellipse center is updated according to the result
of target detection.

Here, we use m representative background samples se-
lected from the ellipse contour. Theoretically, it is best to
use all pixels on the boundary of the search area (ellipse
contour) as representative background samples. However,
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Frame 010

Frame 145

Frame 285
The missing target center and similar color of background make CKM failed.

In Frame 305

(a) CKM-based tracking. (b) RKM-based tracking.

Fig. 9 Comparative experiment with CKM and RKM under complex background.

since there are many pixels on the ellipse contour (several
hundreds in common cases), the number of the clusters will
become a huge one. This dramatically reduces the process-
ing speed of pixel classification during tracking. In order
to realize real-time processing speed, we let m be a small
number. Through extensive experiment of tracking objects
of wide classes, we found that m = 9 is a good choice for
fast tracking while keeping the stable tracking performance.
Of the 9 points, 8 points are resolved by the 8-equal division

of the ellipse contour, and the 9th one is the cross point be-
tween the ellipse contour and the line connecting the pixel
to be classified and the center of the ellipse center.

The target in Fig. 9 is a hand. During tracking, the hand
freely changes between the palm and the back. Although the
colors of palm and back of a hand look similar, they are not
exactly the same colors. At the beginning of this compara-
tive experiment, the hand is showing the palm, so the initial
target colors are those of the palm. Such object is difficult
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Frame 003 Frame 165 Frame 75

Frame 036 Frame 250 Frame 238

Frame 053 Frame 280 Frame 370
In Frame 053, the color was suddenly changed by the flash of camera.

Frame 083 Frame 358 Frame 495
In Frame 358, the target was partially occluded by another pedestrian.

Frame 110 Frame 361 Frame 673
In Frame 673, the target was blurred because of its high-speed movement.

Fig. 10 Experiment result with the RKM tracking algorithm. The left column shows a case with the
non-rigid object. The middle column shows a result with scaling and occlusion. The right one shows
the experiment with illumination variance.

for tracking because: 1) many background areas have quite
similar color to the target; 2) the arbitrary deformation of
non-rigid target shows different shape in the image. To eval-

uate the performance of the CKM and RKM fairly, the two
tracking algorithm are tested with the same sequence, given
the same initial points, and both CKM and RKM are run at
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the same iterations.
As for the CKM-based tracking algorithm [17] in the

left column, the tracking failed since frame 285. In frame
285, the hand turned to show the back and the interfused
background contained quite similar color to the initial target
color (the color of the palm selected from the first frame).
As mentioned in Fig. 6 (a), the CKM-based tracking al-
gorithm greatly suffers from the missing cluster problem.
Since the background interfusion and missing cluster hap-
pened simultaneously, the CKM-based tracking algorithm
mistakenly took the interfused background area that con-
tains similar color to the target as the target area. So the
search area was wrongly updated, which caused the CKM-
based tracking algorithm to fail in frame 305. As for the
RKM-based tracking algorithm in the right column, as men-
tioned in Fig. 6 (c), the RKM-based tracking algorithm is
insensitive to the missing cluster problem by assigning the
missing cluster with a low reliability. Therefore, in frame
285, the RKM-based tracking algorithm could correctly de-
tect the target area and update the search area, which ensures
the robust object tracking.

We also applied the proposed RKM-based tracking al-
gorithm to many other sequences. Figure 10 shows some ex-
periment results, which indicates our tracking algorithm can
deal with the deformation of non-rigid object, color variance
caused by the illumination changes and occlusion. More-
over, this tracking algorithm can also deal with the rotation
and size change of the target.

All the experiments were performed with a desktop
PC with 3.06 GHz Intel XEON CPU, and the image size
was 640 × 480 pixels. When the target size varied from
140 × 140 ∼ 200 × 200 pixels, the processing speed of our
algorithm was about 9 ∼ 15 ms/frame.

5. Conclusion

In this paper, we presented a reliability-based K-means clus-
tering algorithm which is insensitive to the initial value of
K. By applying the proposed algorithm to object track-
ing, we realized a robust tracking algorithm. Through the
comparative experiments with the CKM-based tracking al-
gorithm [17], we confirmed the proposed RKM-based track-
ing algorithm can work more robustly when the background
contains similar colors to the target.

Besides object tracking, we also confirmed the pro-
posed RKM clustering algorithm can be applied to image
segmentation.
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